
GrADS scripting language reference card version 1.7
(GrADS Version 1.7 beta 7) compiled by Karin Meier-Fleischer, DKRZ (beratung@dkrz.de)

General Information

Variables

Assignment

Logical values

Operators

Expressions

Standard input/output

Control flow

Functions

The GrADS scripting language, used via the GrADS run command, provides a similar capa-
bility to the exec command, except that a script may have variables, flow control and access
GrADS command output. Scripts may be written to perform a variety of functions, such as
allowing a user to point and click on the screen to select something, to animate and desired
quantities, to annotate plots with information obtained from GrADS query commands.

Important: GrADS needs a carriage return after the last command line in
the script file, otherwise GrADS won’t execute this command
line.

Script language variable names are 1 to 8 characters, beginning with an alphabetic character
and containing letters or numbers only. The name is case sensitive. The contents of a script
variable is always a character string! For some operations, the character string will be inter-
preted as a number.

Predefined variables lat
lon
lev
result
rec

String variables or string constants are enclosed either with single or double quotes.

 or
name = ’Peter Pan’
name = ”Peter Pan”

Compound variables can be used to construct arrays in scripts. A compound variable has a
variable name with segments seperated by periods.

 Example:

 or

Note:

varname.i.j

i = 10
j = 3
varname.i.j = 343
varname.10.3 = 343

The compound variable name MAY NOT be longer than 16
characters either BEFORE or AFTER substitution. GrADS
scripting language is not particular efficient in handling large
numbers of variables. Thus compound variables should not be
used to create large arrays!

Global variables start with an underscore (_) and will keep its value throughout an entire
script file using (also in functions).

 Example:

Note:

_varname

_var1 = 1024

The global variables cannot be used in function headers
 ‘function myfunc (_var1)’ would be invalid!
It wouldn’t make sense, cause it’s a global variable!!!

The format to assign a record is: variable = expression

The expression is evaluated, and the result is assigned to be the value of the indicated varia-
ble.

Logical values are

TRUE
FALSE

1
0

The following operators are implemented:

| logical OR & logical AND
! unary NOT - unary minus

% concatenation = equaltity
!= not equal > greater than
>= greater than or equal < less than
<= less than or equal + addition
- substraction * multiplication
/ division

Arithmetic operations are done in floating point. If the result is integral, the result string will
be integer. A logical operator will give a character 0 (zero), if the result is FALSE, and a
character 1 (one), if the result is TRUE.

Script expression consists of operands, operatores and parentheses.
The precedence of the operators is

- !(unary)
/ *
+ -
%
= != > >= < <=
&
|

Within the same precedence level, operations are performed left to right. Parentheses modify
the order of operation in the expected ways.

To concatenate two or more strings using the concatenate operator (%) or just two single
quotes (‘ ‘) instead of the operator.

 Example:

 or

 is equal to

col1 = ‘16 17 18 19 20 ‘
col2 = ‘21 22 23 24 25 ‘
col3 = ‘26 27 28 29 30‘
colors = col1%col2%col3
colors = col1’’col2’’col3

‘set ccols ‘colors
‘set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30‘

To write information to the terminal (standard output):

say expression
To write an input request string:

prompt expression

The ‘prompt‘ command works the same way as ‘say‘ except it does not append a carriage
return!

To read an input string/value from the standard input:

pull variable

The script pauses for the user keyboard input (up to the carriage return), and the string
entered by the user is assigned to the indicated variable name.

 Examples: line = ‘Peter Pan, the flying one‘
say line

prompt ‘Enter latitude: ‘
pull lat
prompt ‘Enter longitude: ‘
pull lon
‘set lat ‘lat
‘set lon ‘lon

To combine variables and comments writing to standard out:

 produces

say ‘She said, it is ‘line

She said, it is Peter Pan, the flying one

IF Block:

if expression
 command

else
 command

endif

each must be seperated lines

optional

required!

Note: There is NO ‘else if ‘ element implemented in GrADS!

 Example:

 is equal to

if(i=10); j=20; endif

if(i=10)
 j=20
endif

WHILE Loop:

while expression
 command

endwhile

To continue the while loop use the continue command; to exit
the while loop use the break command

 Example: t=1
while(t<10)
 ‘set t ‘t
 ‘d z‘
 t = t + 1
endwhile

Functions are invoked as a script expression is beeing evaluated. Functions always have a
single string result, but may have one or more string arguments! Functions are invoked by:

name(arg1, arg2, arg3, ..., argn)

If the function has no arguments, you must still provide the parentheses:

name()

To define a user own function by using the function definition record:

function name(var1, var2, var3, ..., varn)

To return from a function, use the return command:

return(expression)

The expression is optional, if not provided, a NULL string will be returned.

 Example: x = 10
y = 30
z = addit(x,y)
say ‘Result of addition: z = ‘z
....
function addit(var1,var2)
 sum=var1+var2
return (sum)

 terminal output Result of addition: z = 40

Sending commands

Intrinsic functions

I/O functions

Example script

The statement record consists only of an expression

expression

The expression is evaluated, and the resulting string is submitted to GrADS as a command.
After this record is executed, the script variable ‘result’ is given the value.

 Examples:

 or

hallo = ‘draw string 4.0 8.0 HALLO‘
hallo

‘query‘
say result

 produces GrADS Version 1.7Beta6 ---
LATS=GRIB_NCSA_HDF__SDF_READ=NCSA_netCDF_HDF
query or q Options:
 q config List configuration of this build
 q files: Lists open files
 q file n: Gives info on particular file
 q define: Lists currently defined variables
 q fwrite: Fwrite Status
 q lats: State of the GrADS-LATS Interface
 q dims: Gives current dimension environment
 q time: Gives current time
 q gxinfo: Gives graphics environment info
 q shades: Gives colors and levels of shaded contours
 q pos: Waits for mouse click, returns position
 q w2gr: Convert world to grid coordinates
 q gr2w: Convert grid to world coordinates
 q w2xy: Convert world to x,y screen coordinates
 q xy2w: Convert x,y screen coordinates to world
 coordinates
 q gr2xy: Convert grid to x,y screen coordinates
 q xy2gr: Convert x,y screen to grid coordinates
 q pp2xy: Convert pre-projected grid coordinates to
 screen x,y coordinates
 q defval: Gives defined grid value given grid i,j

To get a single word from a string:

res = subwrd(string,word)

The result is the nth ‘word’ from the string. If string is too short, the result is the NULL
string. ‘word’ must be an integer value.

To get a single line from a string containing several lines:

res = sublin(string,line)

The result is the nth ‘line’ from the string. If the string has too few lines, the NULL string is
returned. ‘line’ must be an integer value.

To get a part of a string:

res = substr(string,start,length)

The substring of ‘string’ starting at location ‘start’ for length ‘length’ will be returned. If the
string is too short, the result will be short or the NULL string. ‘start’ and ‘length’ must be an
integer value.

 Examples:

 produce e.g.

‘query time‘
res = subwrd(result,3)
year = substr(res,9,4)
say year

1880

The function sublin is very usefull, if you want to control opening, reading, writing and clos-
ing an extern ASCII file.
For example, the first record in the ASCII file ‘the_title.txt’ to be read is

Szenario A 1880 - 2099

The following part of a script will open, read and close the file, controling the status of each
statement:

ret = read(‘the_title.txt’)
code = sublin(ret,1)
if(code != 0)
 say ‘read error #‘code
 ‘quit‘
endif
title = sublin(ret,2)
‘draw title ‘title
ret = close(‘the_title.txt’)
code = sublin(ret,1)
if(code != 0)
 say ‘close error #’code
 ‘quit‘
endif

To read records from an ASCII file:

res = read(filename)

The result is a string containing two lines. The first line is the return status and the second
line is the record. The record may have a maximum of 80 characters. Use the sublin intrin-
sic function to seperate the lines.

The return status of read:
0
1
2
8
9

ok
open error
end of file
file open for write
I/O error

To write records to an ASCII output file:

res = write(filename, record <,append>)

The record is written to the file ‘filename’. On the first call to write for a particular file, the
file is opened in write mode; this will destroy an existing file ‘filename’! If you use the
optional append flag, the file will be opened in append mode, and all writes will be
appended to the end of the file.

The return status of write:
0
1
8

ok
open error
file open for read

To close an opened file:

res = close(filename)

The close command closes the named ASCII file and can also be used to rewind the file.

The return status of close:
0
1

ok
file not open

 Examples: ‘q file 1‘
ret = result
res = write(‘file_1.txt’, ret)
status = sublin(res,1)
if(status != 0)
 say ‘write error #‘status
 ‘quit‘
endif
res = close(‘file_1.txt’)
status = sublin(res,1)
if(status != 0)
 say ‘close error #’status
 ‘quit‘
endif

The following example script draws 1200 shaded contour frames (1200 time records). The
year, which will be used in the title string, is read from the ‘query time’ result. The private
colors are defined in the function palette(). The ‘set clip ..’ command is used with the ‘set
dbuff on’ and ‘swap’ commands to restrict the redraw of the plot to areas with changes from
frame to frame.

At the DKRZ - Hamburg, videos were recorded using this kind of animation within
GrADS. To achieve smooth animations, the single frame technique had been applied.

‘reinit‘
‘open descriptor.ctl‘
count = 0
rec = 1200
incr = 1; t = 1
palette()
‘set vpage 0.0 11.0 0.0 8.5‘
‘set parea 1.0 10.0 1.4 7.9‘
‘set dbuff on‘
‘set mpdset lowres‘
‘set map 0 1 10‘
‘set lat -90 90‘
‘set lon -180 180‘
‘set mpvals -180 180 -90 90‘
‘set mproj robinson‘
‘set grid on 5 0‘
while (count < rec)

‘set t ‘t
‘q time‘
res = subwrd(result,3)
year = substr(res,9,4)
‘set grads off‘
‘set string 1 c 8‘
‘set strsiz 0.23 0.26‘
‘draw string 5.5 7.6 Aerosol - Control ‘year
‘set gxout shaded‘
‘set cint 1.0‘
‘set cmin -4.0‘
’set cmax 4.0‘
‘set clevs -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0‘
‘set ccols 17 18 19 21 22 23 24 25 26 27‘

‘display data‘
‘set gxout contour‘
‘set cterp off‘
‘set csmooth off‘
‘set cint 1.0‘
‘set clab off‘

‘display data‘
‘run cbar.gs‘
‘set clip 1.0 10.0 1.4 7.9‘
‘swap‘

count = count + incr
t = t + incr

endwhile

function palette()
‘set rgb 16 0 0 20‘
‘set rgb 17 0 29 85‘
‘set rgb 18 0 44 128‘
‘set rgb 19 0 83 230‘
‘set rgb 21 0 151 250‘
‘set rgb 22 104 173 255‘
‘set rgb 23 177 213 255‘
‘set rgb 24 255 250 110‘
‘set rgb 25 255 209 116‘
‘set rgb 26 255 160 80‘
‘set rgb 27 255 100 65‘

return

